110 research outputs found

    Core gene identification using gene expression

    Get PDF
    While humans share most of their genetic code with one another, small differences in the DNA can have an impact on an individual’s risk of disease. Common genetic variants exert individually small effects on the development of a disease, but their combined impact is substantial. Although recent research has identified thousands of variants that are associated to complex traits, our understanding of the molecular mechanisms that eventually lead to disease is limited. One way to dive into the molecular changes that result from genetic variation, is to look at changes in gene activity (‘gene expression’). Each cell contains the same genetic code, but genes are only expressed when and where they are required. Research has shown that many disease-associated genetic variants also affect gene expression. Such a change in the expression of a gene can lead to an altered level of the protein it encodes, which in turn can be the start of a dysregulation in the system that can eventually develop into a disease. This thesis describes how gene expression patterns can be used to prioritise and describe the function of trait-relevant genes. The first chapters evaluate methodological considerations for doing gene expression research. Another study covers the systematic linking of genetic variation to gene expression in blood and the last research chapter describes a method for gene prioritisation that leverages the idea that multiple genetic variants converge onto disease-causing genes. These insights can be used to better understand disease and to identify potential drug targets

    Correction for both common and rare cell types in blood is important to identify genes that correlate with age

    Get PDF
    Background Aging is a multifactorial process that affects multiple tissues and is characterized by changes in homeostasis over time, leading to increased morbidity. Whole blood gene expression signatures have been associated with aging and have been used to gain information on its biological mechanisms, which are still not fully understood. However, blood is composed of many cell types whose proportions in blood vary with age. As a result, previously observed associations between gene expression levels and aging might be driven by cell type composition rather than intracellular aging mechanisms. To overcome this, previous aging studies already accounted for major cell types, but the possibility that the reported associations are false positives driven by less prevalent cell subtypes remains. Results Here, we compared the regression model from our previous work to an extended model that corrects for 33 additional white blood cell subtypes. Both models were applied to whole blood gene expression data from 3165 individuals belonging to the general population (age range of 18-81 years). We evaluated that the new model is a better fit for the data and it identified fewer genes associated with aging (625, compared to the 2808 of the initial model;

    Limited evidence for blood eQTLs in human sexual dimorphism

    Get PDF
    The genetic underpinning of sexual dimorphism is very poorly understood. The prevalence of many diseases differs between men and women, which could be in part caused by sex-specific genetic effects. Nevertheless, only a few published genome-wide association studies (GWAS) were performed separately in each sex. The reported enrichment of expression quantitative trait loci (eQTLs) among GWAS-associated SNPs suggests a potential role of sex-specific eQTLs in the sex-specific genetic mechanism underlying complex traits. To explore this scenario, we combined sex-specific whole blood RNA-seq eQTL data from 3447 European individuals included in BIOS Consortium and GWAS data from UK Biobank. Next, to test the presence of sex-biased causal effect of gene expression on complex traits, we performed sex-specific transcriptome-wide Mendelian randomization (TWMR) analyses on the two most sexually dimorphic traits, waist-to-hip ratio (WHR) and testosterone levels. Finally, we performed power analysis to calculate the GWAS sample size needed to observe sex-specific trait associations driven by sex-biased eQTLs. Among 9 million SNP-gene pairs showing sex-combined associations, we found 18 genes with significant sex-biased cis-eQTLs (FDR 5%). Our phenome-wide association study of the 18 top sex-biased eQTLs on >700 traits unraveled that these eQTLs do not systematically translate into detectable sex-biased trait-associations. In addition, we observed that sex-specific causal effects of gene expression on complex traits are not driven by sex-specific eQTLs. Power analyses using real eQTL- and causal-effect sizes showed that millions of samples would be necessary to observe sex-biased trait associations that are fully driven by sex-biased cis-eQTLs. Compensatory effects may further hamper their detection. Our results suggest that sex-specific eQTLs in whole blood do not translate to detectable sex-specific trait associations of complex diseases, and vice versa that the observed sex-specific trait associations cannot be explained by sex-specific eQTLs

    A characterization of cis- and trans-heritability of RNA-Seq-based gene expression

    Get PDF
    Insights into individual differences in gene expression and its heritability (h2) can help in understanding pathways from DNA to phenotype. We estimated the heritability of gene expression of 52,844 genes measured in whole blood in the largest twin RNA-Seq sample to date (1497 individuals including 459 monozygotic twin pairs and 150 dizygotic twin pairs) from classical twin modeling and identity-by-state-based approaches. We estimated for each gene h2 total, composed of cis-heritability (h2 cis, the variance explained by single nucleotide polymorphisms in the cis-window of the gene), and trans-heritability (h2 res, the residual variance explained by all other genome-wide variants). Mean h2 total was 0.26, which was significantly higher than heritability estimates earlier found in a microarray-based study using largely overlapping (>60%) RNA samples (mean h2 = 0.14, p = 6.15 × 10−258). Mean h2 cis was 0.06 and strongly correlated with beta of the top cis expression quantitative loci (eQTL, ρ = 0.76, p < 10−308) and with estimates from earlier RNA-Seq-based studies. Mean h2 res was 0.20 and correlated with the beta of the corresponding trans-eQTL (ρ = 0.04, p < 1.89 × 10−3) and was significantly higher for genes involved in cytokine-cytokine interactions (p = 4.22 × 10−15), many other immune system pathways, and genes identified in genome-wide association studies for various traits including behavioral disorders and cancer. This study provides a thorough characterization of cis- and trans-h2 estimates of gene expression, which is of value for interpretation of GWAS and gene expression studies

    Systematic Prioritization of Candidate Genes in Disease Loci Identifies TRAFD1 as a Master Regulator of IFN gamma Signaling in Celiac Disease

    Get PDF
    Celiac disease (CeD) is a complex T cell-mediated enteropathy induced by gluten. Although genome-wide association studies have identified numerous genomic regions associated with CeD, it is difficult to accurately pinpoint which genes in these loci are most likely to cause CeD. We used four different in silico approaches-Mendelian randomization inverse variance weighting, COLOC, LD overlap, and DEPICT-to integrate information gathered from a large transcriptomics dataset. This identified 118 prioritized genes across 50 CeD-associated regions. Co-expression and pathway analysis of these genes indicated an association with adaptive and innate cytokine signaling and T cell activation pathways. Fifty-one of these genes are targets of known drug compounds or likely druggable genes, suggesting that our methods can be used to pinpoint potential therapeutic targets. In addition, we detected 172 gene combinations that were affected by our CeD-prioritized genes in trans. Notably, 41 of these trans-mediated genes appear to be under control of one master regulator, TRAF-type zinc finger domain containing 1 (TRAFD1), and were found to be involved in interferon (IFN)gamma signaling and MHC I antigen processing/presentation. Finally, we performed in vitro experiments in a human monocytic cell line that validated the role of TRAFD1 as an immune regulator acting in trans. Our strategy confirmed the role of adaptive immunity in CeD and revealed a genetic link between CeD and IFN gamma signaling as well as with MHC I antigen processing, both major players of immune activation and CeD pathogenesis

    Sex and Gender-Related Differences in COVID-19 Diagnoses and SARS-CoV-2 Testing Practices During the First Wave of the Pandemic:The Dutch Lifelines COVID-19 Cohort Study

    Get PDF
    Background: Although sex differences are described in Coronavirus Disease 2019 (COVID-19) diagnoses and testing, many studies neglect possible gender-related influences. Additionally, research is often performed in clinical populations, while most COVID-19 patients are not hospitalized. Therefore, we investigated associations between sex and gender-related variables, and COVID-19 diagnoses and testing practices in a large general population cohort during the first wave of the pandemic when testing capacity was limited. Methods: We used data from the Lifelines COVID-19 Cohort (N = 74,722; 60.8% female). We applied bivariate and multiple logistic regression analyses. The outcomes were a COVID-19 diagnosis (confirmed by SARS-CoV-2 PCR testing or physician's clinical diagnosis) and PCR testing. Independent variables included among others participants' sex, age, somatic comorbidities, occupation, and smoking status. Sex-by-comorbidity and sex-by-occupation interaction terms were included to investigate sex differences in associations between the presence of comorbidities or an occupation with COVID-19 diagnoses or testing practices. Results: In bivariate analyses female sex was significantly associated with COVID-19 diagnoses and testing, but significance did not persist in multiple logistic regression analyses. However, a gender-related variable, being a health care worker, was significantly associated with COVID-19 diagnoses (OR = 1.68; 95%CI = 1.30-2.17) and testing (OR = 12.5; 95%CI = 8.55-18.3). Female health care workers were less often diagnosed and tested than male health care workers (ORinteraction = 0.54; 95%CI = 0.32-0.92, ORinteraction = 0.53; 95%CI = 0.29-0.97, respectively). Conclusions: We found no sex differences in COVID-19 diagnoses and testing in the general population. Among health care workers, a male preponderance in COVID-19 diagnoses and testing was observed. This could be explained by more pronounced COVID-19 symptoms in males or by gender inequities

    Workplace impact on employees:A Lifelines Corona Research Initiative on the return to work

    Get PDF
    A large proportion of the global workforce migrated home during the COVID-19 pandemic and subsequent lockdowns. It remains unclear what the exact differences between home workers and non-home workers were, especially during the pandemic when a return to work was imminent. How were building, workplace, and related facilities associated with workers’ perceptions and health? What are the lessons to be learned? Lifelines Corona Research Initiative was used to compare employees’ workplaces and related concerns, facilities, work quality, and health in a complete case analysis (N = 12,776) when return to work was imminent. Mann-Whitney U, logistic regression, and Wilcoxon matched-pairs were used for analyses. Notwithstanding small differences, the results show that home workers had less favourable scores for concerns about and facilities of on-site buildings and workplaces upon return to work, but better scores for work quality and health than non-home workers. However, additional analyses also suggest that building, workplace, and related facilities may have had the capacity to positively influence employees’ affective responses and work quality, but not always their health.</p
    corecore